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Abstract

Purpose.—Exposure misclassification, selection bias, and confounding are important biases in 

epidemiologic studies, yet only confounding is routinely addressed quantitatively. We describe 

how to combine two previously described methods and adjust for multiple biases using logistic 

regression.

Methods.—Weights were created from selection probabilities and predictive values for exposure 

classification and applied to multivariable logistic regression models in a case-control study of 

prepregnancy obesity (body mass index ≥30 versus <30 kg/m2) and cleft lip with or without cleft 

palate (CL/P) using data from the National Birth Defects Prevention Study (2,523 cases, 10,605 

controls).

Results.—Adjusting for confounding by race/ethnicity, prepregnancy obesity and CL/P were 

weakly associated (odds ratio 1.10, 95% confidence interval: 0.98, 1.23). After weighting the data 

to account for exposure misclassification, missing exposure data, selection bias, and confounding, 

multiple bias-adjusted odds ratios ranged from 0.94 to 1.03 in non-probabilistic bias analyses and 

median multiple bias-adjusted odds ratios ranged from 0.93 to 1.02 in probabilistic analyses.

Conclusions.—This approach, adjusting for multiple biases using a logistic regression model, 

suggested that the observed association between obesity and CL/P could be due to the presence of 

bias.
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INTRODUCTION

Bias can affect results of epidemiologic studies so that both the direction and magnitude of 

the observed association can be incorrect.1 The effects of measurement error (information 

bias) and selection bias are important, but despite available quantitative bias analysis 

methods, analyses adjusting for biases other than confounding are rare.2–7 Bias analyses can 

be used to determine the likelihood that observed associations are causal, and are 

particularly useful when policy or interventions are being proposed based on the assumption 

of causality.8

Dozens of studies have found associations between prepregnancy obesity and an increased 

risk of having a child with a birth defect.9 Many studies have reported similar, weak 

associations between prepregnancy obesity and cleft lip with or without cleft palate (CL/P). 

Three meta-analyses have estimated odds ratios (ORs) of 1.13 (95% confidence interval 

[CI]: 1.04, 1.23), 1.16 (95% CI: 1.00, 1.34), and 1.20 (95% CI: 1.03, 1.40) for associations 

between prepregnancy obesity (body mass index (BMI) ≥30 kg/m2 versus normal weight, 

18.5–24.9 kg/m2) and either CL/P or cleft lip with cleft palate.9–11

These associations are small enough that exposure misclassification or selection bias could 

explain the results. One previous study investigated potential effects of nondifferential 

exposure misclassification on this association; the OR was 1.25 before accounting for 

misclassification and ranged from 1.38 to 2.94 after.12 No other study has attempted to 

adjust this association for biases other than confounding.

The purpose of this analysis is two-fold. The first is to explore how the association between 

prepregnancy obesity and CL/P might be affected by exposure misclassification and 

selection bias. The second is to demonstrate how to combine two previously described 

methods to adjust for misclassification and selection bias using both non-probabilistic and 

probabilistic multiple bias analysis.

MATERIALS AND METHODS

Study Population

We used data from the National Birth Defects Prevention Study (NBDPS), a population-

based case-control study of birth defects.13 Cases (live births, still births, terminations of 

pregnancy) were identified from birth defects surveillance systems in 10 U.S. states 

(Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North 

Carolina, Texas, Utah) and controls (live births with no major birth defects) from birth 

certificates or hospital birth records in the same areas. Participating mothers were 

interviewed 6 weeks to 2 years after their child’s birth. Eligible mothers delivered on or after 

October 1, 1997 with an estimated due date on or before December 31, 2011. Study sites 

received institutional review board approval and participants provided informed consent.

The outcome of interest was nonsyndromic isolated CL/P; clinical geneticists reviewed 

medical records to exclude cases possibly caused by genetic or other syndromes.14 Isolated 

cases were those occurring in an infant without other major birth defects. The exposure of 
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interest was prepregnancy BMI, dichotomized as obese (≥30 kg/m2) or non-obese (<30 kg/

m2). BMI was calculated from prepregnancy weight and height, self-reported during the 

NBDPS interview.

We included study site, maternal race/ethnicity, and maternal education in the models as 

potential confounders. Only mothers reporting their race/ethnicity as non-Hispanic white, 

non-Hispanic black, or Hispanic were included, to correspond with available exposure 

misclassification validation data (details below).

Among 3,161 CL/P case mothers and 11,692 control mothers, we excluded 382 (12%) case 

mothers of infants with non-isolated CL/P, 199 (6%) case and 763 (7%) control mothers 

reporting race/ethnicities not meeting inclusion criteria, 1 (<1%) case and 7 (<1%) control 

mothers with missing race/ethnicity, and 56 (2%) case and 317 (3%) control mothers with 

missing data on maternal education. Following exclusions, we included 2,523 case mothers 

and 10,605 control mothers. Mothers with missing BMI were retained in the analysis so we 

could account for missing exposure data.

Conventional Analysis

We used logistic regression to estimate crude and confounding-adjusted ORs and 95% CIs 

for associations between prepregnancy obesity and CL/P. All statistical analyses were 

conducted in SAS version 9.4 (Cary, NC).

Bias Analysis

In this analysis, we perform both non-probabilistic and probabilistic bias analysis. 

Probabilistic analyses take into account uncertainty in bias parameter estimates to be taken 

into account by conducting analyses using a range of values for the bias parameters.15 For 

readers wishing more detail on the bias analysis methods, the Supplemental Materials 

include: (1) a step-by-step worked example in which a non-probabilistic adjustment for 

multiple biases is conducted by hand, (2) sample SAS code, and (3) an algebraic proof 

demonstrating the general case. Probabilistic analysis is an extension of the non-

probabilistic analysis in the worked example.

Adjustment for Exposure Misclassification and Confounding

We used the method of Lyles and Lin to adjust for exposure misclassification.16 Predictive 

values (e.g., positive or negative predictive values) are ideally calculated from cross-

tabulations of misclassified and correctly classified exposure categories in a validation 

dataset. Predictive values represent the probability that the prepregnancy obesity status 

reported by the participant (obese, not obese) is the true prepregnancy obesity status. If 

internal validation data are not available, use of external validation data, expert opinion, or 

educated guesses are other options.8 If only sensitivity (Se) and specificity (Sp) are 

available, the formulae included in the Supplemental Materials can be used to convert these 

to predictive values.

We had no internal validation data on exposure misclassification for NBDPS. We used 

external validation data from the 1999–2010 National Health and Nutrition Examination 
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Surveys (NHANES), representative of the civilian noninstitutionalized population of the 

United States.17 NHANES participants self-report weight and height during an in-person 

interview. Later, height and weight are measured during a physical exam. All participants 

provided informed consent.

We restricted the NHANES analysis to nonpregnant females aged 16–49 years with height 

and weight measurements. We cross-tabulated self-reported and measured BMI categories 

conditional on race/ethnicity, accounting for the complex sampling design, to estimate Se 

and Sp. Although predictive values can be calculated from these data, we estimated Se and 

Sp to examine nondifferential and differential exposure misclassification (whether or not 

misclassification is differential depends directly on differences in Se and Sp between cases 

and controls, not predictive values). Reliable estimates from NHANES were available for 

non-Hispanic white, non-Hispanic black, and Mexican-American women, and therefore we 

restricted our NBDPS analysis to these racial/ethnic groups (because approximately two-

thirds of Hispanics in the U.S. are of Mexican descent, we used the estimate for Mexican-

Americans for all NBDPS Hispanic women).18

We assumed that the NHANES Se and Sp were accurate estimates of the Se and Sp in 

NBDPS. Not knowing if exposure misclassification was differential or nondifferential, we 

performed three analyses, assuming: (1) nondifferential misclassification, (2) “differential 

A” misclassification (classification is better for cases than controls), and (3) “differential B” 

misclassification (classification is better for controls than cases). In the first, we assigned 

cases and controls to have the same Se and Sp values (NHANES Se and Sp). In the second, 

we assigned the NHANES Se and Sp to controls and Se + 0.05 and Sp + 0.03 to cases. In the 

third, we assigned the NHANES Se and Sp to controls and Se – 0.05 and Sp – 0.03 to cases. 

Se and Sp were restricted to lie between 0.5 and 1.0, inclusive. We converted Se and Sp to 

predictive values (restricted to lie between 0 and 1, inclusive). Bias parameters were 

calculated separately for non-Hispanic white, non-Hispanic black, and Hispanic/Mexican-

American women. For simplicity, we assumed they did not differ by other variables.

We also used predictive values to account for missing BMI.16 Among women with missing 

values for self-reported BMI but measured BMI in NHANES, we determined the probability 

that a woman with missing BMI was truly obese or not obese; these were the predictive 

values used in the analysis. Other missing data methods, such as multiple imputation, could 

also have been used.

For the analysis, we created a dataset with two observations for each participant (participant 

“copies”): one copy was assigned to have prepregnancy obesity, and the other to not have 

prepregnancy obesity — these represent the two possible obesity statuses the participant 

could have had in the absence of exposure misclassification.16 The assigned prepregnancy 

obesity status was used as the exposure in the logistic regression models (i.e., not the status 

reported by the participant). In the model, each participant copy was weighted by the 

predictive values corresponding to their assigned obesity status (the probability that the 

exposure assignment was the truth). Potential confounders were included as covariates; any 

confounder that would be included in a conventional analysis should also be included in the 

bias analysis. For non-probabilistic analyses, we calculated the OR only. The standard error 
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from the logistic regression model should not be used to calculate a 95% CI because this 

does not take into account error introduced by estimating bias parameters.4

To conduct probabilistic bias analysis, we assigned triangular distributions to each predictive 

value using the values calculated above as the mode and +/− 0.10 of the mode as the upper 

and lower bounds (restricted to fall between 0 and 1). We sampled each parameter 5,000 

times and calculated 5,000 ORs. The results were summarized as the median OR and 95% 

simulation interval (SI), the 2.5th and 97.5th percentile of the OR distribution.

We used the method of Lash et al. to account for random error, but other methods, such as 

bootstrapping, could also be used.4 For each bias-adjusted log OR, we multiplied the 

standard error from the conventional multivariable logistic regression model by a randomly 

selected value from a standard normal distribution. This value was then subtracted from the 

log OR and exponentiated. The result is presented as the median OR and 95% random error-

added simulation interval (RESI), the 2.5th and 97.5th percentiles of the OR distribution 

following addition of random error.

Adjustment for Selection Bias and Confounding

We used inverse probability of selection weights (IPSW) to adjust for selection bias.19 The 

probability of selection into the study (or participation in the study) is ideally estimated from 

study records, but if unavailable, external validation data, expert opinion, or educated 

guesses can be used.8 The IPSW is the inverse of this probability.

NBDPS participation rates for cases and controls were 67% and 65%.13 We did not know to 

what extent these participation rates differed by BMI or to what degree eligible individuals 

were ascertained. For simplicity, we assumed complete ascertainment of eligible cases and 

controls. We used external validation data and educated guesses to estimate how 

participation rates differed by BMI. We found a study showing that mothers self-reporting 

normal weight were more likely to participate in a pregnancy study than other mothers.20 

(BMI is likely serving as a proxy for sociodemographic differences between women.) We 

assumed that NBDPS case mothers were motivated to participate regardless of BMI, but 

control mothers would be more susceptible to sociodemographic determinants of 

participation. We assigned all case mothers a selection probability of 0.67 (case participation 

rate), reflecting equal motivation to participate. We assigned selection probabilities of 0.60 

for obese control mothers, 0.67 for non-obese control mothers, and 0.65 for control mothers 

with missing obesity status; the weighted average was 0.65 (control participation rate). For 

simplicity, we assumed that selection probabilities did not differ by other variables. The 

IPSW (analysis weights) were the inverse of these probabilities. For non-probabilistic 

analyses, we estimated the OR using multivariable logistic regression.

For the probabilistic analysis, we assigned triangular distributions to each selection 

probability, using +/− 0.10 of the mode as the upper and lower bounds, with values restricted 

to lie between 0 and 1. We selected 5,000 sets of selection probabilities, inverted them to 

calculate the IPSW, and used these to calculate 5,000 ORs. Results were summarized as 

median OR and 95% SI. We added random error, producing a median OR and 95% RESI.
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Multiple Bias Analysis

To adjust for exposure misclassification, missing exposure data, selection bias, and 

confounding, we multiplied 5,000 simulated IPSW by 5,000 simulated predictive values to 

create 5,000 combined weights. Then, as before, to adjust for exposure misclassification we 

created a dataset with two observations per participant and assigned each observation the 

combined weight corresponding to the assigned exposure status. The multivariable model 

regressed assigned exposure (not reported exposure) on the outcome, adjusted for 

confounders (study site, maternal race/ethnicity, maternal education), and was weighted by 

the combined weight to estimate the OR. Probabilistic results were summarized as median 

OR and 95% SI. Random error was added to generate a median OR and 95% RESI.

When biases are adjusted serially in multiple bias analysis, the order of bias adjustment is 

important; if adjustment is done out of order, incorrect results could be obtained.4,15 

Although we did not adjust biases serially (a single model is used), there is an element of 

“order” needed to estimate valid parameters.

If we consider exposure misclassification and selection bias, there are four possible datasets: 

(1) both biases present, (2) selection bias only, (3) exposure misclassification only, and (4) 

no exposure misclassification or selection bias. Our goal is to move from dataset 1 (two 

types of bias) to dataset 4 (no bias). This can be done by removing exposure 

misclassification first (datasets 1 to 2 to 4) or selection bias first (datasets 1 to 3 to 4).

In NBDPS, we removed selection bias first. When estimating IPSWs, we obtained these 

values from a cohort study, which likely had exposure misclassification and selection bias 

(dataset 1). Once the IPSW were estimated and applied, this produced dataset 3 (exposure 

misclassification only). We estimated predictive values from a “dataset 3” (exposure 

misclassification, no selection bias); this was NHANES. Because NHANES-provided 

weights accounting for nonresponse and other selection effects, we assumed this represented 

what NBDPS would have been in absence of selection bias. Once predictive values were 

estimated and applied, this moved from dataset 3 to 4 (no exposure misclassification or 

selection bias). Because there was confounding in the underlying source population, we 

estimated bias parameters conditional on confounders.

RESULTS

The prevalence of prepregnancy obesity was similar between cases and controls (Table 1). 

There was a lower proportion of non-Hispanic black women and a higher proportion of 

women of lower educational attainment among cases than controls.

Conventional analysis

The crude OR for the association between prepregnancy obesity and CL/P was 1.09 (95% 

CI: 0.97, 1.21). After adjusting for study site, maternal race/ethnicity, and maternal 

education, it was 1.10 (95% CI: 0.98, 1.23). Despite the confidence interval crossing the 

null, we continued the bias analysis because of evidence in the literature that this weak 

association might not be due to chance.
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Exposure misclassification, missing exposure, and confounding

Using bias parameters from NHANES (Table 2) in the non-probabilistic bias analysis, the 

adjusted ORs ranged from 1.02 to 1.13 for the three misclassification types (Table 3). In 

probabilistic analyses, the adjusted median ORs ranged from 1.01 to 1.11.

Selection bias and confounding

In non-probabilistic and probabilistic analyses, the OR adjusted for selection bias and 

confounding was 0.98 (Table 3).

Multiple bias analysis

In the non-probabilistic multiple bias analyses for exposure misclassification, missing 

exposure, selection bias, and confounding, the adjusted OR ranged from 0.94 to 1.03 for the 

three misclassification scenarios. In the probabilistic analyses, it ranged from 0.93 to 1.02 

(Table 3).

DISCUSSION

Multiple bias analyses suggest that exposure misclassification and selection bias could 

account for the weak association between prepregnancy obesity and CL/P, with analyses 

based on realistic bias parameters compatible with no association. The median multiple bias-

adjusted ORs were closer to the null than the confounding-adjusted OR, although the SIs 

and RESIs spanned values compatible with inverse, positive, or no associations. Selection 

bias and “differential B” misclassification had the greatest effects in moving the association 

towards the null.

The ORs for the non-probabilistic and probabilistic analyses were similar, likely because our 

triangular distributions centered on the bias parameters used in the non-probabilistic 

analysis. Conducting non-probabilistic bias analyses is a simple way to explore the effects of 

bias; however, probabilistic analyses might indicate if results are compatible with a wider 

range of values.

One previous bias analysis investigated the impact of nondifferential exposure 

misclassification on this association, finding bias towards the null.12 We explored three 

misclassification scenarios. Hypotheses about if misclassification is differential or 

nondifferential are often made in the absence of quantitative evidence, and making the 

incorrect assumption can cause substantial error in the bias analysis, sometimes even more 

than choosing inaccurate values of Se and Sp.21 For prepregnancy obesity and CL/P, 

misclassification could be differential, because nondifferential error in the measurement of 

BMI can become differential once the variable is dichotomized.22

Combining the methods of Lyles and Lin and Hernán et al. allowed for adjusting 

combinations of different biases.16,19 Non-probabilistic analyses using this method do not 

require advanced statistical programming, but our probabilistic analyses required 

simulations. These bias analyses are considered semi-Bayesian because distributions are not 

defined for all model parameters.4 The analyses could be extended to become fully 
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Bayesian, although probabilistic analyses are considered approximately Bayesian in some 

circumstances.23

We assumed that our parameters were applicable to the NBDPS study population, but had no 

evidence to support this. We tested few of many possible parameters, and if our assumptions 

were incorrect, our results might not reflect the true OR.21 Although we incorporated 

uncertainty into probabilistic analyses, our distributions might not have included the true 

values or been centered around them. Even so, the analyses provided quantitative estimates 

of the potential direction and magnitude of biases in our results. Justifying our parameter 

choices during bias analyses made these uncertainties transparent, something not often done 

in conventional analyses.

We made simplifying assumptions that predictive values varied only by race/ethnicity and 

case-control status and that selection probabilities varied by exposure and case-control 

status. Estimating bias parameters conditional on other variables could provide better 

adjustment for bias, if parameters do vary. However, if bias parameters are estimated from 

subgroups with small sample size, the random error introduced might bias the analysis, 

particularly if extreme weights are estimated and cause some participants to carry undue 

influence.

Additional complexities can be added to our analyses. Outcome misclassification, 

unmeasured confounding, or covariate misclassification might be integrated using other 

methods; for example, using the multiple bias-adjusted OR as input for the method of Ding 

and VanderWeele to examine unmeasured confounders.24 We did not correlate Se and Sp for 

cases and controls, which avoids unlikely combinations of values, and used triangular 

distributions for bias parameters, which are easily implemented but possibly less realistic 

than other distributions.8

Studies of obesity have been criticized when used for causal inference because obesity does 

not correspond to a well-defined causal question.25 However, finding that the observed 

association could be caused by bias might discourage the search for potentially non-existent 

biologic mechanisms that underlie the association.

The association observed between prepregnancy obesity and CL/P could be attributable to 

exposure misclassification or selection bias. We encourage epidemiologists to incorporate 

multiple bias analysis into their research or teaching.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

BMI body mass index

CI confidence interval

CL/P cleft lip with or without cleft palate

IPSW inverse probability of selection weight

NBDPS National Birth Defects Prevention Study

NHANES National Health and Nutrition Examination Survey

OR odds ratio

RESI random error-added simulation interval

Se sensitivity

SI simulation interval

Sp specificity
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Table 1.

Characteristics of case and control mothers in the analysis, National Birth Defects Prevention Study, 1997–

2011.

Case Mothers
(n = 2,523)

Control Mothers
(n = 10,605)

Odds Ratio
(95% Confidence

Interval)

Number % Number %

Prepregnancy obesity

    No 1,919 76 8,259 78 1.00 (Ref)

    Yes 478 19 1,896 18 1.09 (0.97, 1.21)

    Missing 126 5 450 4

Race/ethnicity

    Non-Hispanic white 1,671 66 6,601 62 1.00 (Ref)

    Non-Hispanic black 154 6 1,251 12 0.49 (0.41, 0.58)

    Hispanic 698 28 2,753 26 1.00 (0.91, 1.11)

Maternal education

    0–11 years 503 20 1,800 17 1.41 (1.24, 1.60)

    12 years 684 27 2,545 24 1.36 (1.21, 1.53)

    13–15 years 659 26 2,843 27 1.17 (1.04, 1.32)

    ≥16 years 677 27 3,417 32 1.00 (Ref)

Study site

    Arkansas 297 12 1,384 13 1.00 (Ref)

    California 388 15 1,118 11 1.62 (1.36, 1.92)

    Georgia 246 10 1,117 11 1.03 (0.85, 1.24)

    Iowa 270 11 1,225 12 1.03 (0.86, 1.23)

    Massachusetts 296 12 1,284 12 1.07 (0.90, 1.28)

    New Jersey 92 4 526 5 0.82 (0.63, 1.05)

    New York 208 8 891 8 1.09 (0.89, 1.32)

    North Carolina 173 7 862 8 0.94 (0.76, 1.15)

    Texas 283 11 1,279 12 1.03 (0.86, 1.23)

    Utah 270 11 919 9 1.37 (1.14, 1.65)
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Table 2.

Bias parameters used for adjustment of exposure misclassification by racial/ethnic group, National Health and 

Nutrition Examination Survey, 1999–2010.

Sensitivity Specificity P(obese|missing)a P(not obese|missing)b

Mexican-American 0.817 0.968 0.458 0.542

Non-Hispanic black 0.859 0.959 0.521 0.479

Non-Hispanic white 0.841 0.991 0.335 0.665

a
Proportion of women with missing data on body mass index who were truly obese based on body measurements.

b
Proportion of women with missing data on body mass index who were truly not obese based on body measurements.
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